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ABSTRACT 

The perturbation equation of masseless fields for Kerr-de Sitter geometryare written in form of seperable 

equations as in [17] called the Angular Teukolsky equation. The Angular Teukolsky equation is converted to General 

Heun's equation with singularities coinciding through some confluent process of one of five singularities. As in        

[4, 16, and 17] rational polynomials of at most degree six are introduced.  

AMS Subject classification: 33XX. 
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1. INTRODUCTION  

Teukolsky equation is the consequences of perturbation equation fer Kerr-de Sitter geometry with the 

separability of angular and radial parts respectively. Carter [18] was the first to discover that the scalar wave function 

is separable. Other consideration is the 
�
�spin electromagnetic field, gravitational perturbations and gravitino for the 

Kerr-de Sitter class of geometry.  

The Teukolsky equation is applicable in the study of black holes in general. The solutions of the equation are 

in most cases expressed as series solutions of some specialized functions. This approach has been carried out by so 

many researchers say Teukol- sky (1973), Breuer et al (1977), Frackerell and Crossman (1977), Leahy and Unruh 

(1979), Chakrabarti(1984), Siedel(1989), Suzuki et all (1989) just to mention but few. Although Teukolsky equation 

has five singular points one irregular with four regular points. By some confluent process, these singular points are 

reduced to four coinciding with the singular points of Heun's equation.  

The objective of this work is to obtain polynomial solutions for the derived Tuekolsky equation through its 

conversion to Heun's equation through rational polynomials of degree at most 2. New solutions in terms of the 

rational polynomials are obtained.  

The paper is organized as follows; The first section deals with the introduction of Teukol- sky equation, the 

second section deals with the derivation of Teukolsky using the work of [17], the third section has to do with the 

derivation of Angular Teukolsky and its conversion to Heun's equation and the fourth section has to do with Heun's 

differential equation and its transformation to hypergeometric differential equation via rational polynomials of at 

most degree 6. The fifth section gives the various results. All processes follow the works in [4, 16, 17].  
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2. THE TEUKOLSKY EQUATION [17] 

Tekolsky equation was derived using the Kerr (-Newman)-de Sitter geometries  

��� = −�� �	
�
∆ + 	��

∆� � − ∆������
(���)��� [��� − (�� + ��)��]� + ∆(� �)��� (�� − ��!"�#��)�,                      (2.1) 

Where 

 ∆
= (�� + ��) �1 − &
&
� ��� − 2(� + )� = 

− �
&� (� − ��)(� − � )(� − � ′�)(� − � ′ ), 

∆�= 1 + �*+��#, , = Λ&�
- , ./ = � + !�*+�# And.� = ././.                                                                        (2.2) 

Here Λ is the cosmological constant; M is the mass of the black hole, �(its angular momentum and )its 

charge. The electromagnetic field due to the charge of the black hole was given by  

12�32 = − 4

(���)�5� (�� − �*+��#��).                                                                                                     (2.3) 

In particular, the following vectors were adopted as the null tetrad, 

.72 = �(���)8
��&�9
∆ , 1, 0, &(���)

∆ �, 
.;2 = �

�5� ((1 + ,)(�� + ��), −∆
, 0, � (1 + ,)) 

;2 = �
�/<�∆� (!�(1 + ,)�!"#, 0, ∆� , �(���)

���� ;2 = ;∗2.                                                                          (2.4) 

It was assumed that the time and azimuthal dependence of the fields has the form> �(?� − ;2), the 

tetrad components of derivatives and the electromagnetic field were 

72 = @A, "2B2 = ∆��/ @AC, ;2B2 = <∆�√�5E FAC , 

.G2B2 = <∆�√�5E∗ FA, 7212 = − 4

�5�, 

G212 = GE 212 = 0                                                                                                                                 (2.5) 

Where  

.@A = B
 − �(���)H
∆ + " I∆∆ , @�C = B
 + �(���)H

∆ + " I∆∆  

FA = B� − �(���)J
∆� + " I�(<∆�����)

<∆����� , 

F�C = B� − �(���)J
∆� + " I�(<∆�����)

<∆����� .                                                                                                          (2.6) 

With K =  ?(��  +  ��) − �Gand L =  −�?�!"# + M
���� 
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Using the Newman-Penrose formalism it was showed that perturbation equation in the Kerr-de sitter 

geometry is separable for massless spin 0, �
� , 1, -

�and 2 fields. Similarly in the Kerr-Newman-de sitter space those 

for spin 0, � 
�fields are also separable. The separated equations for fields with spin s and charge e were given by  

[<∆�F� �C <∆�F�  

−2(1 + ,)(2� − 1)�?*+�# − 2,(� − 1)(2� − 1)*+��# +⋋]O�(#) = 0  

[∆
@�@�C + 2(1 + ,)(2� − 1)!? − ��
&� (� − 1)(2� − 1)  

+  �(���)P4H
���P4
II∆ − 2!�>) −⋋]Q�(�) = 0                                                                                     (2.7) 

3. TRANSFORMATION OF TEUKOLSKY EQUATION TO HEUN'S E QUATION [17]  

It was shown in [17] that the Teukolsky equations after separation can be transformed to the Heun's 

equation by factoring out a single regular singularity.  

3.1 Angular Teukolsky Equation  

From (2.7), the angular Teukolsky equation after separation was shown to be  

.{ 	
	S T(1 + ,3�)(1 − 3) 	

	SU +⋋ −�(1 − ,) + (���)�
� V� − 2,3� 

.+ ���
���S� [�(,G − (1 + ,)V)3 − (���)�

� V� − 2G(1 + ,)V + �� 

− (� �)�M�
(���S�)(� S�) − (� �)8�����MS9

� S� }O(3) = 0,                                                                                                 (3.1) 

Where 3 =  *+�# and V=a?. This equation has five regular singularities as ±1, ± Y
√�and∞. It was also 

noted that the angular equation has no independence on ( ad ).by choosing the variable Z such as  

.Z = � [√\�
S��

S [√\
 

Then (3.1) takes the following form,  
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8��a√�9� ] �

^ � 

.−G� �a√�M
(���)� − �� √�(� �)

(���)� − G� �
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�
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Where 1�  = [M �]
� , 1�  = [M �]

� , and 1�  = ± a
� (���

<�e − √,G − 7�). Now g(Z)satisfies the equation  

{ 	
	^� + [�hi��

^ + �h���
^ � + �hj��

^ ^_ ] 	
	^ + 5±^�k

^(^ �)(^ ^_}g(Z) = 0,                                                                         (3.3) 

Where  

..±= 1� + 1� + 1- ± 1-∗ + 1 

.l =  a
c√� {⋋ −�(1 − ,) − 2, + 2(1 + ,)(G + �)V − 81 + 7√,9� (21�1� + 1�+1�) 

.−47√,(21�1- + 1� + 1-) Mj
� [4� + 1 + (7√,)�] 

.+ �j
� (1 − 7√,)� + 27G�√,(1 + √,)}. 

Equation (3.3) is called the Heun's equation which has four regular singularities. The g(Z) is determined by 

requiring non-singular behaviors at Z =0 and1. We can take either one of signs of 1-to find the solution O(Z)in 

terms of solution of Heun's differential equation.  

Every homogenous linear second order differential equation with four regular singularities can be 

transformed into (3.3) with the assumption that 21�  +  1 = n, 21� +  1 = o, 21- +  1 = p, .±= ,q and 

l = r, Z = � and, Z�as defined above, and read as  

	�k
	s� + �t

s + u
s � + v

s 	� 	k
	s + �ws x

s(s �)(s 	) l = 0,                                                                                            (3.4) 

Where{,, q, n, p, �, r}(� ≠ 0,1) are parameters, generally complex and arbitrary, linked by FUSCHAIN 

constraint, + q + 1 = n + o + p. This equation has four regular singular points at {0,1, �,∞},, with the exponents 

of these singular being respectively, {0,1, −n}, {0,1, −o}, {0,1, −p}and{,, q}. The equation (3.4) is called Heun's 

equation.  

4. HEUN TO HYPERGEOMETRIC IN KUMMER FUNCTION [4] 

In this section we show that the Heun's equation (3.4), derived from transformation of Angular Teukolsky 

Equation can be solved via some polynomial transformation by taken the derivative of the initial solution in 

relation to a hypergeometric function.  

To achieve this objective, let ℋ�(�, r; ,, q, n, o, p; 3)be the analytic solution of (3.4) around 3 =  0 and 

normalized byℋ�(0) = 1, we seek to answer the following questions  

(i)When is ℋ(3)reducible to some hypergeometric equation 2|�? 
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• (ii) When is @ℋ(3)a good choice of parameters?  

Maier [4] in 2005 solved the problem (i) in full generality from the following theorem, enlarging the work 

of Kuiken [16] 

Theorem 4.1If the Heun's equation parameter values (�, r, ,, q, n, oare such that the H eun 's equation is not 

trivialr ≠ 0 +� ,q ≠ 0, and all four of � =  0, 1, �,∞are singu- lar points, then there are only seven noncomposite no 

prefactorHeun-to-hypergeometric transformations, up to isomorphism. These seven transformations involve polynomial 

maps of degree 2, 3, 4, 3, 4, 5,6respectively. A representative list gives 

• ℋ"(2, ,q, ,, q, n, , + q − 2n + 1; �) =2|� ��
- , w

- ; �
� ; 1(1 − �)��.                                                              (4.1) 

• ℋ" �4, ,q, ,, q �
� , �(��w)

- ; �� =2|� ��
� , w

� , n, 1 − (1 − �)�(1 − s
c�.                                                               (4.2) 

• ℋ" �2, ,q, ,, q, ��w
� ; �� =2|� ��

c , w
c ; ��w��

c ; 1 − 4[�)2 + �) − �
�]��.                                                           (4.3) 

• ℋ"(�
� + ! √-

� , ,q, ��
� + ! √-

� � ,, q, ��w��
- ; ��w��

- ; �) =2|� }w
- , �

- ; ��w��
- ; 1 − ~1 − s

i���√j�
�-�.                         (4.4) 

• ℋ" ��
� + ! �√�

c , , ��
- − ,� ��

� + √�
c � ; , �

- − ,, �
� , �

� ; �� =2|� ~�
c , � -�

�� ; �
� ; 1 − �1 − cs

����√��- �1 − cs
����√��� (4.5) 

• ℋ" ��
� + ! ��√��

�A , , ��
� − ,� ��

� + √��
�f � ; , �

� − ,, �
- , �

- ; �� = 

2|� b�
� , � ��

-A ; �
- ; − �A��

�c !√15�(−1 + �) �1 − �fs � �√��s
�f �-d                                                                     (4.6) 

• ℋ" ��
� + ! �√�

c , , ��
- − ,� ��

� + √�
c � ; , �

- − ,, �
- , �

- ; �� =2|� ~�
� , �

� − �
� , �

- ; 1 − {[1 − s
i�±�√j�

]- − �
�}��.             (4.7) 

5. MAIN RESULTS 

Let us notice that the six quadratic transforms of Kuiken reduces to one, the others being" composite" 

resulting from the known quadratic transforms of the hypergeometric function2|�. Also the four last cases, the 

singular point 3 = , is located in the complex plane. Applying the derivative property of the hypergeometric 

functions:  

	
	S2|�8�, �; *; 3 = Q(�)9 = &�

� Q′(�)2|��� + 1, � + 1; � + 1′3 = Q(�)�                                                   (5.1) 

For instance, the derivative of the second degree transformation i) generates another 2|�with a linear prefactor 

	
	S2|� �w

� , �
� ; n; 1 − (1 − �)�� = − w�

�t (−1 + �)2|� w��
� , ���

� ; n; 2� − ��),                                                  (5.2) 

and the pull back operator with ℋ" = O�to reflect. the solution of (3.1), gives  

.
	

	s O�(2, ,q, ,, q, n, , + q − 2n + 1; �) = O�(2,(, + 2)(q, +2), q, +2, , + 2, n + 1, , + q − 2n + 3; �).  (5.3) 
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	s O� �4, ,q, ,, q, �

� , �(��w)
- ; �� = 8- cs�s�9

� × O� �4, , + 3), (q + 3);  , + 3; q + 3, �
- ; ��                            (5.4) 

.
	

	s O� �2, ,q; ,, q, ��w��
c , ��w

� ; �� = ��w
��w�� (2�� − 4� + 1)(−1 + �) × 

O� �2, , + 4)(q + 4); , + 4, q + 4, ��w��
c , ��w�f

� ; ��.                                                                                 (5.5) 

.
	

	s O� ��
� + ! √-

� , ,q(�
� + ! √-

� , ,, q, ��w��
- ; ��w��

- ; �� 

.= 6,q8−3 − !√3 + 6�9�(, + q + 1) �(3 + !√3) - × 

O� ��
� + ! √-

� , (, + 1)(q + 1)(�
� + ! √-

� , (, + 1)(q + 1), ��w��
- ; ��w��

- ; ��.                                                  (5.6) 

.
	

	s O� ��
� + ! �√�

c , ,(�
- − ,)(�

� + ! √�
c ; ,, �

- − ,, �
� , �

� ; �� = 

.
c�( ��-� 8 � �√��cs9�( � ��√���s

-8���√�9j(����√�)  

O� ��
� + ! �√�

c , −(, + 4)(�A
- − ,)(�

� + ! √�
c ; , + 4, �c

- − ,, -
� , -

� ; ��                                                                (5.7) 

.
	

	s O� ��
� + ! ��√��

�A , ,(�
� − ,)(�

� + ! √��
�f ; ,, �

� − ,, �
- , �

- ; �� = 

. √��
�fc-� !,(−5 + 6,)818� − 9 − !√159�(−90� + 9 + !√15 + 90�� − 2!�√15 × 

O� ��
� + ! ��√��

�A , (, + 5)(− ��
� − ,)(�

� + ! √��
�f ; , + 5, − ��

� − ,, �
- , �

- ; ��.                                                       (5.8) 

.
	
	s O� ��

� + ! √-
� , ,(1 − ,)(�

� + ! √-
� ; ,; 1 − ,, �

- , �
- ; �� = � �(� �)�bi�±�√j�  sdji���i�±�√j�  s��

bi�±�√j� d�  

O� ��
� ± ! √-

� , (, + 1)(−,)(�
� + ! √-

� ; , + 1; −,, �
- , �

- ; ��                                                                              (5.9) 

6. CONCLUDING REMARKS AND SUGGESTIONS 

In this paper, we have shown that the solutions of the derived Angular Teukolsky equation transformed to 

Heun's equation could be obtained in form of Heun's functions via polynomials of at most degree six transformations. 

The new solutions obtained were as a result of the work of [4]. The integral operator application is also in progress.  

REFERENCES 

1. A. Ronveaux, Heun'sDifferential equation (Oxford University press, Oxford, 1995).  

2. A. O. Smirnov, Elliptic solutions and Heun.'s Equations, C. R. M. Proceedings and Lecture notes 32, 287-305 

(2002).  

3. P. A. Clarkson and P. J. Oliver, J. Diff. Equations 124, 225-246 (1996).  

4. R. S. Maier, Heun-to-hsjperqeometric transformations, contribution to the con- ference of Foundations of 



New Solutions of Angular Teukolsky Equation Via Transformation to Heuns                                                                                               91 
Equation with the Application of Rational Polynomial of at Most Degree 2, 3, 4, 5, 6 

 

 
Impact Factor(JCC): 2.7341 - This article can be downloaded from www.impactjournals.us 

 

Computational Mathematics 02 (2002); downloadable from http://www.math. umn. edu/",focm/c/Maier. pdf  

5. N. H. Christ and T. D. Lee, Phys. Rev. D 12 1606 (1975);  

6. A. Ishkhanyan and K. A. Souminen, J. Phys. A: Math. Gen. 36, L81-L85 (2003).  

7. G. Valent, Heun functions versus elliptic functions, International Conference on Differential Equations, Special 

Functions and Applications, Munich, 2005; [e- print math-ph/0512006].  

8. V. Stanley Grossman, Multivariate calculus, Linear Algebra, and differential equation                                

(Saunder college publishing, New York, 1995).  

9. S. P. Tsarev, An algorithm for complete enumeration of all factorizations of a linear ordinary differential 

operator, Proceedings of the international symposium on Symbolic and algebraic computation, pp 226-231 

(Switzerland, 1996).  

10. M. Van Hoeij, Journal of Symbolic Computation 24 n 5, 537-561 (1997).  

11. R. K. Bhadari, A. Khare, J. Law, M. V. N. Murthy and D. Sen, J. Phys. A: Math. Gen. 30, 2557-2260 (1997).  

12. M. Suzuki, E. Takasugi and H. Umetsu, Prog. Theor. Phys, 100,491-505 (1998).  

13. K. Takemura, Commun. Math.Phys. 235, 467-494 (2003); J. Nonlinear Math. Phys. 11, 480-498 (2004).  

14. P. Dorey, J. Suzuki and R. Tateo, J. Phys. A: Math. Gen. 37, 2047-2061 (2004).  

15. M. N. Hounkonnou, A. Ronveaux and A. Anjorin, Derivatives of Heun's function from some properties of 

hype'f"geometric equation; Proceeding of International Workshop on Special Functions, Marseille (2007), in 

press; preprint; ICMPA- MPA/2007/21.  

16. K. Kuiken, Heun's equations and the Hypergeometric equations, S. 1. A. M. J. Math. Anal. 10(3), 655-657 

(1979).  

17. Hisao Suzuki, EhuchiTakasugi and Hiroshi Umetsu (1998),"Pertubations of Kerr-de Sitter Black Hole and Heun's 

Equation. EPHOU 98005 OU-HET-296. 

18. B. Carter, Comm. Math. Phys 10, 280 1968 

 

 




